Pre-Calculus CP 1 – Section 3.4 Notes Solving Exponential & Logarithmic Equations

Reminder of Important Properties

One-to-One Properties:

$$a^x = a^y$$
 if and only if $x = y$.

$$\log_a x = \log_a y$$
 if and only if $x = y$.

• Inverse Properties:
$$a^{\log_a x} = x$$

$$\log_a a^x = x$$

Solving Strategies

- 1. Rewrite the original equation in a form that allows for the use of the one-to-one properties of exponential or logarithmic functions.
- 2. Rewrite an exponential equation in logarithmic form, then apply the Inverse Property of logarithmic functions.
- 3. Rewrite a logarithmic equation in exponential form, then apply the Inverse Property of exponential functions.

Examples

Solve the following exponential equations and approximate to three decimal places (if needed).

1.
$$4^x = 72$$

2.
$$3(2^x)=42$$

3.
$$e^x + 5 = 60$$

4.
$$2(3^{2t-5})-4=11$$

Solving Exponential & Logarithmic Equations

5.
$$e^{2x} - 3e^x + 2 = 0$$

Examples:

Solve the following logarithmic equations and approximate to three decimal places (if needed).

1.
$$\ln x = 2$$

2.
$$\log_3(5x-1) = \log_3(x+7)$$

3.
$$5+2\ln x = 4$$

4.
$$2\log_5 3x = 4$$

Checking for extraneous roots....

$$5. \quad \log 5x + \log (x-1) = 2$$